

LAB MANUAL
II Year B. Tech II- Semester

MECHANICAL ENGINEERING

AY: 2022-23

Prepared by:

Mr. CH. NARAYANA MURTHY
 Assistant Professor

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

DEPARTMENT OF MECHANICAL ENGINEERING

(Autonomous Institution-UGC, Govt. of India)
Secunderabad-500100, Telangana State, India.

www.mrcet.ac.in

DATA STRUCTURES USING PYTHON LAB

R20A0384

http://www.mrcet.ac.in/

DEPARTMENT OF MECHANICAL ENGINEERING

Vision
To acknowledge quality education and instill high patterns of discipline making
the students technologically superior and ethically strong which involves the
improvement in the quality of life in human race.

Mission
 To achieve and impart holistic technical education using the best of

infrastructure, outstanding technical and teaching expertise to establish the
students in to competent and confident engineers.

 Evolving the center of excellence through creative and innovative teaching
learning practices for promoting academic achievement to produce
internationally accepted competitive and world class professionals.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

ANALYTICAL SKILLS
To facilitate the graduates with the ability to visualize, gather information, articulate,
analyze, solve complex problems, and make decisions. These are essential to address the
challenges of complex and computation intensive problems increasing their
productivity.

TECHNICAL SKILLS

To facilitate the graduates with the technical skills that prepare them for immediate
employment and pursue certification providing a deeper understanding of the
technology in advanced areas of computer science and related fields, thus encouraging
to pursue higher education and research based on their interest.

SOFT SKILLS
To facilitate the graduates with the soft skills that include fulfilling the mission, setting
goals, showing self-confidence by communicating effectively, having a positive attitude,
get involved in team-work, being a leader, managing their career and their life.

PROFESSIONAL ETHICS

To facilitate the graduates with the knowledge of professional and ethical
responsibilities by paying attention to grooming, being conservative with style,
following dress codes, safety codes, and adapting themselves to technological
advancements.

PROGRAM SPECIFIC OUTCOMES (PSOs)

After the completion of the course, B. Tech Computer Science and
Engineering, the graduates will have the following Program Specific
Outcomes:

1. Fundamentals and critical knowledge of the Computer System:- Able to
Understand the working principles of the computer System and its
components , Apply the knowledge to build, asses, and analyze the software
and hardware aspects of it .

2. The comprehensive and Applicative knowledge of Software Development:
Comprehensive skills of Programming Languages, Software process
models, methodologies, and able to plan, develop, test, analyze, and manage
the software and hardware intensive systems in heterogeneous platforms
individually or working in teams.

3. Applications of Computing Domain & Research: Able to use the
professional, managerial, interdisciplinary skill set, and domain specific
tools in development processes, identify the research gaps, and provide
innovative solutions to them.

PROGRAM OUTCOMES (POs)

Engineering Graduates should possess the following:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialization to the solution of complex engineering
problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex
engineering problems reaching substantiated conclusions using first principles of mathematics,
natural sciences, and engineering sciences.

3. Design / development of solutions: Design solutions for complex engineering problems and
design system components or processes that meet the specified needs with appropriate
consideration for the public health and safety, and the cultural, societal, and environmental
considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research
methods including design of experiments, analysis and interpretation of data, and synthesis of
the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
engineering and IT tools including prediction and modeling to complex engineering activities
with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess
societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering
solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader
in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the
engineering community and with society at large, such as, being able to comprehend and write
effective reports and design documentation, make effective presentations, and give and receive
clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s own work, as a member and
leader in a team, to manage projects and in multi disciplinary environments.

12. Life- long learning: Recognize the need and have the preparation and ability to engage in
independent and life-long learning in the broadest context of technological change.

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY
Maisammaguda, Dhulapally Post, Via Hakimpet, Secunderabad – 500100

GENERAL LABORATORY INSTRUCTIONS

1. Students are advised to come to the laboratory at least 5 minutes before (to the

starting time), those who come after 5 minutes will not be allowed into the lab.

2. Plan your task properly much before to the commencement, come prepared to the lab

with the synopsis / program / experiment details.

3. Student should enter into the laboratory with:

a. Laboratory observation notes with all the details (Problem statement, Aim,

Algorithm, Procedure, Program, Expected Output, etc.,) filled in for the lab

session.

b. Laboratory Record updated up to the last session experiments and other

utensils (if any) needed in the lab.

c. Proper Dress code and Identity card.

4. Sign in the laboratory login register, write the TIME-IN, and occupy the computer

system allotted to you by the faculty.

5. Execute your task in the laboratory, and record the results / output in the lab

observation note book, and get certified by the concerned faculty.

6. All the students should be polite and cooperative with the laboratory staff, must

maintain the discipline and decency in the laboratory.

7. Computer labs are established with sophisticated and high end branded systems,

which should be utilized properly.

8. Students / Faculty must keep their mobile phones in SWITCHED OFF mode during the

lab sessions. Misuse of the equipment, misbehaviors with the staff and systems etc., will

attract severe punishment.

9. Students must take the permission of the faculty in case of any urgency to go out; if

anybody found loitering outside the lab / class without permission during working

hours will be treated seriously and punished appropriately.

10. Students should LOG OFF/ SHUT DOWN the computer system before he/she leaves

the lab after completing the task (experiment) in all aspects. He/she must ensure the

system / seat is kept properly.

HEAD OF THE DEPARTMENT PRINCIPAL

INDEX

S.No Name of the program Page
No

1.

Write a Python program for class, Flower, that has three instance
variables of type str, int, and float that respectively represent the
name of the flower, its number of petals, and its price. Your class
must include a constructor method that initializes each variable to
an appropriate value, and your class should include methods for
setting the value of each type, and retrieving the value of each type.

1

2.

Develop an inheritance hierarchy based upon a Polygon class that
has abstract methods area() and perimeter(). Implement classes
Triangle, Quadrilateral, Pentagon, that extend this base class, with
the obvious meanings for the area() and perimeter() methods.
Write a simple program that allows users to create polygons of the
various types and input their geometric dimensions, and the
program then outputs their area and perimeter.

3

3.

Write a python program to implement Method Overloading and
Method Overriding.

6

4.

Write a Python program to illustrate the following comprehensions:
a) List Comprehensions b) Dictionary Comprehensions
c) Set Comprehensions d) Generator Comprehensions

10

5.

Write a Python program to generate the combinations of n distinct
objects taken from the elements of a given list. Example: Originallist:
[1, 2, 3, 4, 5, 6, 7, 8, 9] Combinations of 2 distinct objects: [1, 2]
[1, 3] [1, 4] [1, 5] [7, 8] [7, 9] [8, 9].

15

6. Write a program for Linear Search and Binary search. 16

7. Write a program to implement Bubble Sort and Selection Sort. 18

8. Write a program to implement Merge sort and Quick sort. 20

9. Write a program to implement Stacks and Queues. 24

10. Write a program to implement Singly Linked List. 33

11. Write a program to implement Doubly Linked list. 40

12. Write a program to implement Binary Search Tree. 46

Data Structures using Python Lab AY-2022-2023

Page 1

1.Write a Python program for class, Flower, that has three instance variables of type str,
int, and float, that respectively represent the name of the flower, its number of petals,
and its price. Your class must include a constructor method that initializes each variable
to an appropriate value, and your class should include methods for setting the value of
each type, and retrieving the value of each type.

Program:-

class Flower:

#Common base class for all Flowers
def __init__(self, petalName, petalNumber, petalPrice): self.name =
petalName
self.petals = petalNumber self.price = petalPrice

def setName(self, petalName):

self.name = petalName
def setPetals(self, petalNumber):

 self.petals = petalNumber

def setPrice(self, petalPrice):

self.price = petalPrice

def getName(self):

return self.name
def getPetals(self):

return self.petals
def getPrice(self):

return self.price

#This would create first object of Flower
class f1 = Flower("Sunflower", 2, 1000)
print ("Flower Details:")
print ("Name: ", f1.getName())
print ("Number of petals:", f1.getPetals())
print ("Price:",f1.getPrice())
print ("\n")

#This would create second object of Flower
class f2 = Flower("Rose", 5, 2000)
f2.setPrice(3333)
f2.setPetals(6)
print ("Flower Details:")
print ("Name: ", f2.getName())
print ("Number of petals:", f2.getPetals())
print ("Price:",f2.getPrice())

 Department of ME

Data Structures using Python Lab AY-2022-2023

Page 2

Output:

Signature of the Faculty

Department of ME

Data Structures using Python Lab AY-2022-2023

Page 3

2.Develop an inheritance hierarchy based upon a Polygon class that has abstract
methods area() and perimeter(). Implement classes Triangle, Quadrilateral, Pentagon,
that extend this base class, with the obvious meanings for the area() and perimeter()
methods. Write a simple program that allows users to create polygons of the various
types and input their geometric dimensions, and the program then outputs their area
and perimeter.

Program:

from abc import abstractmethod, ABCMeta import math
class Polygon(metaclass = ABCMeta):
def __init__(self, side_lengths = [1,1,1], num_sides = 3):
 self._side_lengths = side_lengths
 self._num_sizes = 3

@abstractmethod
def area(self):
 pass

@abstractmethod
def perimeter(self):
 pass

def __repr__(self):
return (str(self._side_lengths))

class Triangle(Polygon):
 def __init__(self, side_lengths):
 super().__init__(side_lengths, 3)
 self._perimeter = self.perimeter()
 self._area = self.area()

def perimeter(self):
 return(sum(self._side_lengths))
def area(self):
 #Area of Triangle
 s = self._perimeter/2 product = s
 for i in self._side_lengths: product*=(s-i)
 return product**0.5

class Quadrilateral(Polygon):
def __init__(self, side_lengths):
 super().__init__(side_lengths, 4)
 self._perimeter = self.perimeter()

self._area = self.area()

def perimeter(self):

Department of ME

Data Structures using Python Lab AY-2022-2023

Page 4

 return(sum(self._side_lengths))

def area(self):
Area of an irregular Quadrilateral
 semiperimeter = sum(self._side_lengths) / 2
 return math.sqrt((semiperimeter - self._side_lengths[0]) * (semiperimeter -
 self._side_lengths[1]) * (semiperimeter - self._side_lengths[2]) * (semiperimeter -
self._side_lengths[3]))

class Pentagon(Polygon):
 def __init__(self, side_lengths):
 super().__init__(side_lengths, 5)
 self._perimeter = self.perimeter()
 self._area = self.area()

def perimeter(self):
 return((self._side_lengths) * 5)

def area(self):
 # Area of a regular Pentagon
 a = self._side_lengths
 return (math.sqrt(5*(5 + 2 * (math.sqrt(5)))) * a * a) / 4

#object of Triangle
t1 = Triangle([1,2,2])
print(t1.perimeter(), t1.area())

#object of Quadrilateral
q1 = Quadrilateral([1,1,1,1])
print(q1.perimeter(), q1.area())

#object of Pentagon p1 = Pentagon(1)
print(p1.perimeter(), p1.area())

Department of ME

Data Structures using Python Lab AY-2022-2023

Page 5

Output:

Signature of the Faculty

Department of ME

Data Structures using Python Lab AY-2022-2023

Page 6

3.Write a python program to implement method overloading and method
overriding.

Method Overloading
Method overloading is an OOPS concept which provides ability to have several methods
having the same name with in the class where the methods differ in types or number of
arguments passed.

Method overloading in Python

Method overloading in its traditional sense (as defined above) as exists in other
languages like method overloading in Java doesn’t exist in Python.

In Python if you try to overload a function by having two or more functions having the
same name but different number of arguments only the last defined function is
recognized, calling any other overloaded function results in an error.

Achieving method overloading

Since using the same method name again to overload the method is not possible in
Python, so achieving method overloading in Python is done by having a single method
with several parameters. Then you need to check the actual number of arguments
passed to the method and perform the operation accordingly.

Program:

class OverloadDemo:
sum method with default as None for parameters
def sum(self, a=None, b=None, c=None):

When three params are passed
if a!=None and b!=None and c!=None:

 s = a + b + c
print('Sum = ', s)

When two params are passed
elif a!=None and b!=None:

s = a + b
print('Sum = ', s)

od = OverloadDemo()
od.sum(7, 8)
od.sum(7, 8, 9)

Department of ME

Data Structures using Python Lab AY-2022-2023

Page 7

Output:

Signature of the Faculty

Department of ME

Data Structures using Python Lab AY-2022-2023

Page 8

Method overriding - Polymorphism through inheritance

Method overriding provides ability to change the implementation of a method in a child
class which is already defined in one of its super class. If there is a method in a super
class and method having the same name and same number of arguments in a child class
then the child class method is said to be overriding the parent class method.

When the method is called with parent class object, method of the parent class is
executed. When method is called with child class object, method of the child class is
executed. So the appropriate overridden method is called based on the object type,
which is an example of Polymorphism.

Program:

class Person:
def init (self, name, age):

self.name = name
self.age = age

def displayData(self):

print('In parent class displayData method')
print(self.name)
print(self.age)

class Employee(Person):

def __init__(self, name, age, id):
calling constructor of super class
super().__init__(name, age)
self.empId = id

def displayData(self):

print('In child class displayData method')
print(self.name)
print(self.age)
print(self.empId)

#Person class object
person = Person('Karthik Shaurya', 26)
person.displayData()
#Employee class object
emp = Employee(''Karthik Shaurya', 26, 'E317')
emp.displayData()

Department of ME

Data Structures using Python Lab AY-2022-2023

Page 9

Output:

Signature of the Faculty

Department of ME

Data Structures using Python Lab AY-2022-2023

Page 10

4.Write a Python program to illustrate the following comprehensions:
a)List Comprehensions b) Dictionary Comprehensions
c) Set Comprehensions d) Generator Comprehensions

Comprehensions in Python
Comprehensions in Python provide us with a short and concise way to construct new
sequences (such as lists, set, dictionary etc.) using sequences which have been already
defined. Python supports the following 4 types of comprehensions:

a)List Comprehensions
b)Dictionary Comprehensions
c)Set Comprehensions
d)Generator Comprehensions

a)List Comprehensions:
List Comprehensions provide an elegant way to create new lists. The following is the
basic structure of a list comprehension:

output_list = [output_exp for var in input_list if (var satisfies this condition)]

Note that list comprehension may or may not contain an if condition. List
comprehensions can contain multiple for (nested list comprehensions).

Example: Suppose we want to create an output list which contains only the even
numbers which are present in the input list. Let’s see how to do this using for loop and
list comprehension and decide which method suits better.

Using Loop:

#Constructing output list WITHOUT using List comprehensions
input_list = [1, 2, 3, 4, 4, 5, 6, 7, 7]
output_list = []
#Using loop for constructing output list
for var in input_list:
 if var % 2 == 0:
 output_list.append(var)
print(“Output List using for loop:”, output_list)

Output:

Department of ME

Data Structures using Python Lab AY-2022-2023

Page 11

Using List Comprehension:

Using List comprehensions
for constructing output list
input_list = [1, 2, 3, 4, 4, 5, 6, 7, 7]
list_using_comp = [var for var in input_list if var % 2 == 0]
print("Output List using list comprehensions:",list_using_comp)

Output:

b)Dictionary Comprehensions
Extending the idea of list comprehensions, we can also create a dictionary using
dictionary comprehensions. The basic structure of a dictionary comprehension
looks like below.

output_dict = {key:value for (key, value) in iterable if (key, value satisfy this condition)}

Example 1: Suppose we want to create an output dictionary which contains only
the odd numbers that are present in the input list as keys and their cubes as
values. Let’s see how to do this using for loops and dictionary comprehension.

Using Loop:
input_list = [1, 2, 3, 4, 5, 6, 7]
output_dict = {}
Using loop for constructing output dictionary
for var in input_list:
 if var % 2 != 0:
 output_dict[var] = var**3
print("Output Dictionary using for loop:",output_dict)

Output:

Department of ME

Data Structures using Python Lab AY-2022-2023

Page 12

Using Dictionary Comprehension:

Using Dictionary comprehensions
for constructing output dictionary
input_list = [1,2,3,4,5,6,7]
dict_using_comp = {var:var ** 3 for var in input_list if var % 2 != 0}
print("Output Dictionary using dictionary comprehensions:", dict_using_comp)

output:

Example 2: Given two lists containing the names of states and their corresponding
capitals, construct a dictionary which maps the states with their respective capitals.
Let’s see how to do this using for loops and dictionary comprehension.
Using Loop:

state = ['Gujarat', 'Maharashtra', 'Rajasthan'] capital = ['Gandhinagar', 'Mumbai', 'Jaipur']
output_dict = {}
Using loop for constructing output dictionary
for (key, value) in zip(state, capital):

output_dict[key] = value
print("Output Dictionary using for loop:", output_dict)

Output:

Using Dictionary Comprehension
Using Dictionary comprehensions
for constructing output dictionary
state = ['Gujarat', 'Maharashtra', 'Rajasthan']
capital = ['Gandhinagar', 'Mumbai', 'Jaipur']
dict_using_comp = {key:value for (key, value) in zip(state, capital)}
print("Output Dictionary using dictionary comprehensions:",dict_using_comp)

Department of ME

Data Structures using Python Lab AY-2022-2023

Page 13

c) Set Comprehensions:

Set comprehensions are pretty similar to list comprehensions. The only difference
between them is that set comprehensions use curly brackets { }. Let’s look at the
following example to understand set comprehensions.
Example : Suppose we want to create an output set which contains only the even
numbers that are present in the input list. Note that set will discard all the duplicate
values. Let’s see how we can do this using for loops and set comprehension.
Using Loop:

input_list = [1, 2, 3, 4, 4, 5, 6, 6, 6, 7, 7]
output_set = set()
Using loop for constructing output set
for var in input_list:
 if var % 2 == 0:
 output_set.add(var)
print("Output Set using for loop:", output_set)

output:

Using Set Comprehension:

Using Set comprehensions
for constructing output set
input_list = [1, 2, 3, 4, 4, 5, 6, 6, 6, 7, 7]
set_using_comp = {var for var in input_list if var % 2 == 0}
print("Output Set using set comprehensions:",set_using_comp)

Output:

Department of ME

Data Structures using Python Lab AY-2022-2023

Page 14

d)Generator Comprehensions:
Generator Comprehensions are very similar to list comprehensions. One difference
between them is that generator comprehensions use circular brackets whereas list
comprehensions use square brackets. The major difference between them is that
generators don’t allocate memory for the whole list. Instead, they generate each value
one by one which is why they are memory efficient. Let’s look at the following example
to understand generator comprehension:

input_list = [1, 2, 3, 4, 4, 5, 6, 7, 7]
output_gen = (var for var in input_list if var % 2 == 0)
print("Output values using generator comprehensions:", end = ' ')
for var in output_gen:
 print(var, end = ' ')

Department of ME

Data Structures using Python Lab AY-2022-2023

Page 15

5.Write a Python program to generate the combinations of n distinct objects taken from
the elements of a given list. Example: Original list: [1, 2, 3, 4, 5, 6, 7, 8, 9] Combinations
of 2 distinct objects: [1, 2] [1, 3] [1, 4] [1, 5] [7, 8] [7, 9] [8, 9].

Program.

def combination(n, n_list):
if n<=0:
 yield [] return
for i in range(len(n_list)):
 c_num = n_list[i:i+1]
for a_num in combination(n-1, n_list[i+1:]):
 yield c_num + a_num

n_list = [1,2,3,4,5,6,7,8,9]
print("Original list:")
print(n_list)
n = 2
result = combination(n, n_list)
print("\nCombinations of",n,"distinct objects:")
for e in result:
 print(e)

Output:

Department of ME

Data Structures using Python Lab AY-2022-2023

Page 16

6.Write a program for Linear Search and Binary search

Linear Search Program:
from array import *
def linear_Search(list1, n, key):
 # Searching list1 sequentially
 for i in range(0, n):
 if (list1[i] == key):
 return i
 return -1

ArraySize = int(input('Enter How many Elements to read:'))
list1 = array('i', [])
for i in range(ArraySize):
 print("Enter ",str(i+1),"Element")
 list1.append(int(input()))

key = int(input('Enter Key:'))
Function call
n=int(len(list1)-1)
res = linear_Search(list1, n, key)
if res != -1:
 print("Element is present at index", str(res))
else:
 print("Element is not present in list")

Output:

Department of ME

Data Structures using Python Lab AY-2022-2023

Page 17

Binary Search Program

from array import *
def binary_search(ls, n):
 low = int(0)
 high = int(len(ls)-1)
 mid = int(0)
 while low <= high:
 mid = int((high + low)/2)
 if ls[mid] < n:
 low = mid + 1
 elif ls[mid] > n:
 high = mid - 1
 else:
 return mid
 return -1
Initial list1

ArraySize = int(input('Enter How many Elements to read:'))

list1 = array('i', [])

for i in range(ArraySize):
 print("Enter ",str(i+1),"Element")
 list1.append(int(input()))

key = int(input('Enter Key:'))
Function call
res = binary_search(list1, key)
if res != -1:
 print("Element is present at index", str(res))
else:
 print("Element is not present in list")

Department of ME

Data Structures using Python Lab AY-2022-2023

Page 18

7.Write a program to implement Bubble Sort and Selection Sort

Bubble Sort Program:

from array import *

def bubble_sort(list1, n):
 for j in range(len(list1) - 1):
 for i in range(len(list1) - 1):
 if list1[i] > list1[i + 1]:
 t = list1[i]
 list1[i] = list1[i+1]
 list1[i + 1] = t
 return list1

ArraySize = int(input('Enter How many Elements to read:'))

list1 = array('i', [])
for i in range(ArraySize):
 list1.append(int(input()))
print('Sorted list is ')
res=bubble_sort(list1, ArraySize)
for i in range(ArraySize):
 print(res[i])

Department of ME

Data Structures using Python Lab AY-2022-2023

Page 19

Selection Sort Program:
from array import *

def selection_sort(lst1, n):
 for i in range(n - 1):
 mini = i
 for j in range(i+1, n):
 if lst1[mini] > lst1[j]:
 mini = j

 t = lst1[i]
 lst1[i] = lst1[mini]
 lst1[mini] = t

 return lst1

ArraySize = int(input('Enter How many Elements to read:'))

list1 = array('i', [])
for k in range(ArraySize):
 list1.append(int(input()))
print('Sorted list is ')
res = selection_sort(list1, ArraySize)
for k in range(ArraySize):
 print(res[k])

Department of ME

Data Structures using Python Lab AY-2022-2023

Page 20

8.Write a program to implement Merge sort and Quick sort.

Merge Sort Program:

from array import *

def mergesort(a, low, high):
 temp = array('i', [])
 if low < high:
 mid = int((low + high) / 2)
 mergesort(a, low, mid)
 mergesort(a, mid + 1, high)
 #CODE FOR MERGING SUB ARRAY'S
 i = low
 j = mid + 1

 while i <= mid and j <= high:
 if a[i] <= a[j]:
 temp.append(a[i])
 i = i + 1
 else:
 temp.append(a[j])
 j = j + 1

 if i > mid:
 while j <= high:
 temp.append(a[j])
 j = j + 1
 else:
 while i <= mid:
 temp.append(a[i])
 i = i + 1
 #copying back values from temp array to main array
 k = low
 for z in temp:
 a[k] = z
 k = k+1

list1 = array('i', [])
num = int(input('Enter How many Elements to read:'))
print("Enter ",num," elements")
for y in range(num):
 list1.append(int(input()))
print('Sorted list is ')
mergesort(list1, 0, num-1)
for y in range(num):
 print(list1[y],end=" ")

Department of ME

Data Structures using Python Lab AY-2022-2023

Page 21

Department of ME

Data Structures using Python Lab AY-2022-2023

Page 22

Quick Sort Program:

from array import *

def partition(x, low, high):
 if low < high:

 down = low
 up = high
 pivot = down
 while down < up:
 while x[down] <= x[pivot] and down < high:
 down = down + 1
 while x[up] > x[pivot]:
 up = up-1
 if down < up:
 t = x[down]
 x[down] = x[up]
 x[up] = t

 t = x[pivot]
 x[pivot] = x[up]
 x[up] = t
 return up

def quicksort(x, low, high):
 if low < high:
 p = int(partition(x, low, high))
 quicksort(x, low, p - 1)
 quicksort(x, p + 1, high)

 return x

list1 = array('i', [])
num = int(input('Enter How many Elements to read:'))

for i in range(num):
 list1.append(int(input()))
print('Sorted list is ')
res = quicksort(list1, 0, num-1)
for i in range(num):
 print(res[i], end=" ")

Department of ME

Data Structures using Python Lab AY-2022-2023

Page 23

Department of ME

Data Structures using Python Lab AY-2022-2023

Page 24

9.Write a program to implement Stacks and Queues
Stack Program using list:

class Stack:
 def __init__(self):
 self.stk = []
 self.top = int(-1)
 self.max=int(3)

 def Push(self):
 if self.top == self.max-1:
 print("Stack Full")
 else:
 val = input("Enter Value to be Pushed")
 self.top = self.top+1
 self.stk.append(val)
 print(val,"Pushed on to the stack")
 def Pop(self):
 if self.top == -1:
 print("Stack is Empty")
 else:
 val = self.stk.pop(self.top)
 self.top = self.top-1
 print(val,"Poped from the stack")
 def Peek(self):
 if self.top == -1:
 print("Stack is Empty")
 else:
 print("Topest Element:",self.stk[self.top])
 def Display(self):
 if self.top == -1:
 print("Stack is Empty")
 else:
 print("Elements in the Stack are:")
 new_lst = self.stk[::-1]
 for x in new_lst:
 print("|", x, "|")
StackObj = Stack()
while True:
 print("\n****Operations On Stack ***")
 print("1.Push")
 print("2.PoP")
 print("3.Peek")
 print("4.Display")
 print("5.Exit")
 choice = int(input("Enter Your Choice:"))
 if choice == 1:
 StackObj.Push()
 elif choice == 2:

Department of ME

Data Structures using Python Lab AY-2022-2023

Page 25

 StackObj.Pop()
 elif choice == 3:
 StackObj.Peek()
 elif choice == 4:
 StackObj.Display()
 elif choice == 5:
 exit(0)
 else:
 print("Invalid Choice! Try Again:")

Output:

Department of ME

Data Structures using Python Lab AY-2022-2023

Page 26

Department of ME

Data Structures using Python Lab AY-2022-2023

Page 27

Stack Program using linked list:

class Node:
 def __init__(self, data=None):
 self.data = data
 self.link = None

class Stack:
 def __init__(self):
 self.top = None

 def Push(self):
 data_in = input("Enter Value to be Pushed")
 NewNode = Node(data_in)
 NewNode.link = self.top
 self.top = NewNode
 print(data_in," Pushed on to stack")

 def Pop(self):
 temp = self.top
 if temp is not None:
 self.top = temp.link
 print(temp.data,"is Deleted from Stack")
 temp = None
 else:
 print("Stack is Empty")

 def Peek(self):
 temp = self.top
 if temp is None:
 print("Stack is Empty")
 else:
 print("Topest Element:",temp.data)

 def Display(self):
 temp = self.top
 if temp is None:
 print("Stack is Empty")
 else:
 while temp is not None:
 print("|", temp.data,"|", end="\n")
 temp = temp.link

StackObj = Stack()
while True:
 print("\n****Operations On Stack ***")
 print("1.Push")
 print("2.PoP")
 print("3.Peek")

Department of ME

Data Structures using Python Lab AY-2022-2023

Page 28

 print("4.Display")
 print("5.Exit")
 choice = int(input("Enter Your Choice:"))
 if choice == 1:
 StackObj.Push()
 elif choice == 2:
 StackObj.Pop()
 elif choice == 3:
 StackObj.Peek()
 elif choice == 4:
 StackObj.Display()
 elif choice == 5:
 exit(0)
 else:

 print("Invalid Choice! Try Again:")

Department of ME

Data Structures using Python Lab AY-2022-2023

Page 29

Queue Program using list:

class Queue:
 def __init__(self):
 self.Q = []
 self.front = int(-1)
 self.rear = int(-1)
 self.max = int(3)

 def Enqueue(self):
 if self.front>self.rear:
 self.front = int(-1)
 self.rear = int(-1)
 self.Q = []
 if self.rear == int((self.max-1)):
 print("Queue is Full")
 else:
 if self.front == -1:
 self.front = 0
 val = input("Enter an Element into Queue")
 self.rear = self.rear + 1
 self.Q.append(val)
 print(val,"Inserted sucessfully into Queue")

 def Dequeue(self):
 if (self.front==-1 and self.rear== -1)or(self.front>self.rear):

self.front=self.rear=-1
 self.Q = []
 print("Queue is Empty")
 else:
 val = self.Q[self.front]
 self.Q[self.front]=""
 self.front = self.front+1
 print(val," is deleted Sucesfully")

 def Display(self):
 if (self.front==-1 and self.rear==-1)or(self.front>self.rear):
 self.front=self.rear=-1
 print("Queue is Empty")
 self.Q = []
 else:
 for i in range(self.front,self.rear+1):
 print(self.Q[i],"<--",end="")

Qobj = Queue()

while True:
 print("\n****Operations On Stack ***")

Department of ME

Data Structures using Python Lab AY-2022-2023

Page 30

 print("1.Enqueue")
 print("2.Dequeue")
 print("3.Display")
 print("4.Exit")
 choice = int(input("Enter Your Choice:"))
 if choice == 1:
 Qobj.Enqueue()
 elif choice == 2:
 Qobj.Dequeue()
 elif choice == 3:
 Qobj.Display()
 elif choice == 4:
 exit(0)
 else:
 print("Invalid Choice! Try Again:")

Department of ME

Data Structures using Python Lab AY-2022-2023

Page 31

Queue Program using linked list:

class Node:
 def __init__(self, data=None):
 self.data = data
 self.link = None

class Queue:
 def __init__(self):
 self.front = None
 self.rear = None

 def Enqueue(self):
 temp = self.front
 data_in=input("Enter an Element into Queue")
 NewNode = Node(data_in)
 if temp is None:
 self.front = NewNode
 self.rear = NewNode
 else:
 while temp.link is not None:
 temp = temp.link
 temp.link = NewNode
 self.rear = NewNode
 print(data_in, " Inserted sucessfully into Queue")

 def Dequeue(self):
 temp = self.front
 if temp is not None:
 self.front = temp.link
 print(temp.data, "is deleted Sucesfully")
 if self.front is self.rear:
 self.front=self.rear=None
 temp = None
 else:
 print("Queue is Empty")

 def Display(self):
 temp = self.front
 if temp is None:
 print("Queue is Empty")
 else:
 while temp is not None:
 print(temp.data,"<--", end="")
 temp = temp.link
Qobj = Queue()

while True:

Department of ME

Data Structures using Python Lab AY-2022-2023

Page 32

 print("\n****Operations On Stack ***")
 print("1.Enqueue")
 print("2.Dequeue")
 print("3.Display")
 print("4.Exit")
 choice = int(input("Enter Your Choice:"))
 if choice == 1:
 Qobj.Enqueue()
 elif choice == 2:
 Qobj.Dequeue()
 elif choice == 3:
 Qobj.Display()
 elif choice == 4:
 exit(0)
 else:
 print("Invalid Choice! Try Again:")

Output:

Department of ME

Data Structures using Python Lab AY-2022-2023

Page 33

10.Write a program to implement Singly Linked List

Program:

class Node:
 def __init__(self, data=None):
 self.data = data
 self.link = None

class SLinkedList:
 def __init__(self):
 self.head = None

 def InsertAtBeg(self, data_in):
 NewNode = Node(data_in)
 NewNode.link = self.head
 self.head = NewNode
 self.TraverseList()

 def InsertAtEnd(self, data_in):
 temp = self.head
 NewNode = Node(data_in)
 if temp is None:
 #print("List Empty")
 self.head=NewNode
 else:
 while temp.link is not None:
 temp = temp.link
 temp.link = NewNode
 self.TraverseList()

 # Function to remove node1
 def RemoveNodeAtBeg(self):
 temp = self.head
 if temp is not None:
 self.head = temp.link
 print(temp.data,"is Deleted from List")
 temp = None
 else:
 print("List is Empty")

 def RemoveNodeAtEnd(self):
 temp = self.head
 if temp==None:
 print("List Empty")
 elif temp.link == None:

Department of ME

Data Structures using Python Lab AY-2022-2023

Page 34

 print(temp.data, "is Deleted from List")
 temp = None
 self.head=None
 else:
 while temp.link is not None:
 prev = temp
 temp = temp.link
 print(temp.data,"is Deleted from List")
 prev.link = None
 temp=None
 self.TraverseList()

 def TraverseList(self):
 temp = self.head
 if temp is None:
 print("Linked List is Empty")
 else:
 while temp is not None:
 print("-->", temp.data, end="")
 temp = temp.link

 def NodeCount(self):
 count = 0
 temp = self.head
 if temp is None:
 return count
 else:
 while temp is not None:
 count = count+1
 temp = temp.link
 return count

 def InsertAtPos(self, data_in,pos):
 NewNode = Node(data_in)
 Nc = int(self.NodeCount())
 if(pos > Nc and Nc == 0)or(pos > Nc and Nc != 0):
 if pos == 1:
 NewNode.link = self.head
 self.head = NewNode
 else:
 print("Invalid Position\nTry Again")
 else:
 cur = self.head
 prev = cur
 count = int(1)
 while count < pos:
 print("While")

Department of ME

Data Structures using Python Lab AY-2022-2023

Page 35

 prev = cur
 cur = cur.link
 count = count+1
 if pos==1:
 NewNode.link = self.head
 self.head = NewNode
 else:
 NewNode.link = cur
 prev.link = NewNode
 self.TraverseList()

#Delete a node at a position
 def DelAtPos(self, pos):
 Nc = int(self.NodeCount())
 if pos > Nc:
 print("Invalid Position\nTry Again")
 elif Nc == 0:
 print("List is empty")
 print("Deletion Not Possible")
 elif pos == 1:
 temp = self.head
 print(temp.data, " is Deleted from List")
 temp = temp.link
 self.head = temp
 else:
 cur = self.head
 count = int(1)
 while count < pos:
 prev = cur
 cur = cur.link
 count = count+1
 temp = cur
 prev.link=cur.link
 print(temp.data, " is Deleted from List")
 temp = None
#Search
 def search(self, key):
 count = 1
 Loc = int(-1)
 temp = self.head
 if temp is None:
 print("List is Empty")
 else:
 while temp is not None:
 if key == int(temp.data):
 Loc = count
 break
 count = count+1

Department of ME

Data Structures using Python Lab AY-2022-2023

Page 36

 temp = temp.link
 if Loc != -1:
 print(key ,"Found at Location ",Loc)
 else:
 print(key, "NOt Found in the List ")

#Creating Object to List ADT
llist = SLinkedList()

while True:
 print("\n****Operations On Single Linked List***")
 print("1.Insert at Begining")
 print("2.Insert at End")
 print("3.Delete at Begining")
 print("4.Delete at End")
 print("5.Traverse the List")
 print("6.Node Count")
 print("7.Insert at a Position")
 print("8.Delete at a Position")
 print("9.Search for a Node")
 print("10.Exit")
 choice = int(input("Enter Your Choice:"))
 if choice == 1:
 data = input("Enter a Value:")
 llist.InsertAtBeg(data)
 elif choice == 2:
 data = input("Enter a Value:")
 llist.InsertAtEnd(data)
 elif choice == 3:
 llist.RemoveNodeAtBeg()
 elif choice == 4:
 llist.RemoveNodeAtEnd()
 elif choice == 5:
 llist.TraverseList()
 elif choice == 6:
 print("Total nodes in the List:",llist.NodeCount())
 elif choice == 7:
 data = input("Enter a Value:")
 nCount=int(llist.NodeCount())
 if nCount==0:
 print("Empty List:")
 else:
 print("Available max position is ",nCount)
 pos = int(input("Enter position of insertion:"))
 llist.InsertAtPos(data, pos)
 elif choice == 8:
 pos = int(input("Enter position for Deletion:"))
 llist.DelAtPos(pos)

Department of ME

Data Structures using Python Lab AY-2022-2023

Page 37

 elif choice == 9:
 keyVal = int(input("Enter key for searching:"))
 llist.search(keyVal)
 elif choice == 10:
 exit(0)
 else:

 print("Invalid Choice! Try Again:")

Department of ME

Data Structures using Python Lab AY-2022-2023

Page 38

Department of ME

Data Structures using Python Lab AY-2022-2023

Page 39

Department of ME

Data Structures using Python Lab AY-2022-2023

Page 40

11.Write a program to implement Doubly Linked list
Program:

class Node:
 def __init__(self, data=None):
 self.data = data
 self.prev = None
 self.next = None

class DLinkedList:
 def __init__(self):
 self.head = None

 def InsertAtBeg(self, data_in):
 NewNode = Node(data_in)
 NewNode.next = self.head
 self.head = NewNode
 self.DisplayList()

 def InsertAtEnd(self, data_in):
 temp = self.head
 NewNode = Node(data_in)
 if temp is None:
 self.head=NewNode
 else:
 while temp.next is not None:
 temp = temp.next
 temp.next = NewNode
 NewNode.prev = temp
 self.DisplayList()

 # Function to remove node
 def RemoveNodeAtBeg(self):
 temp = self.head
 if temp.next is None:
 print(temp.data, "is Deleted from List")
 temp = None
 self.head=temp
 elif temp is not None:
 print(temp.data, "is Deleted from List")
 temp = temp.next
 temp.prev=None
 self.head=temp
 temp = None
 else:
 print("List is Empty")
 self.DisplayList()

 def RemoveNodeAtEnd(self):

Department of ME

Data Structures using Python Lab AY-2022-2023

Page 41

 temp = self.head
 if temp==None:
 print("List is Empty")
 elif temp.next == None:
 print(temp.data, "is Deleted from List")
 temp = None
 self.head=None
 else:
 while temp.next is not None:
 pr = temp
 temp = temp.next
 print(temp.data,"is Deleted from List")
 temp = None
 pr.next = None
 self.DisplayList()

 def DisplayList(self):
 temp = self.head
 if temp is None:
 print("Doubly Linked List is Empty")
 else:
 while temp is not None:
 print("<==>", temp.data, end="")
 temp = temp.next
 print()

 def NodeCount(self):
 count = 0
 temp = self.head
 if temp is None:
 return count
 else:
 while temp is not None:
 count = count+1
 temp = temp.next
 return count

 def InsertAtPos(self, data_in,pos):
 NewNode = Node(data_in)
 Nc = int(self.NodeCount())
 if(pos > Nc and Nc == 0)or(pos > Nc and Nc != 0):
 if pos == 1:
 NewNode.next = self.head
 self.head = NewNode
 else:
 print("Invalid Position\nTry Again")
 else:
 cr = self.head
 pr = cr

Department of ME

Data Structures using Python Lab AY-2022-2023

Page 42

 count = int(1)
 while count < pos:
 print("While")
 pr = cr
 cr = cr.next
 count = count+1
 if pos==1:
 NewNode.next = self.head
 self.head = NewNode
 else:
 NewNode.next = cr
 cr.prev = NewNode
 pr.next = NewNode
 NewNode.prev = pr
 self.DisplayList()

#Delete a node at a position
 def DelAtPos(self, pos):

 Nc = int(self.NodeCount())
 if pos > Nc:
 print("Invalid Position\nTry Again")
 elif Nc == 0 :
 print("List is empty")
 elif pos == 1:
 temp = self.head
 print(temp.data, "is Deleted from List")
 temp = temp.next
 self.head = temp
 if temp is None:
 pass
 else:
 temp.prev = None
 temp = None
 elif Nc==pos:
 temp = self.head
 while temp.next is not None:
 pr = temp
 temp = temp.next
 print(temp.data, "is Deleted from List")
 temp = None
 pr.next = None
 else:
 cr = self.head
 pr = cr
 count = int(1)
 while count < pos:
 pr = cr
 cr = cr.next

Department of ME

Data Structures using Python Lab AY-2022-2023

Page 43

 count = count+1
 Dnode=cr
 print(Dnode.data, " is Deleted from List")
 Dnode = None
 pr.next = cr.next
 temp = cr.next
 temp.prev = pr
 self.DisplayList()

#Search
 def search(self, key):
 count = 1
 Loc = int(-1)
 temp = self.head
 if temp is None:
 print("List is Empty")
 else:
 while temp is not None:
 if key == int(temp.data):
 Loc = count
 count = count+1
 temp = temp.next

 if Loc != -1:
 print(key ,"Found at Location ",Loc)
 else:
 print(key, "NOt Found in the List ")

#Creating Object to List ADT
dll = DLinkedList()
while True:
 print("****Operations On Doubly Linked List***")
 print("1.Insert at Begining")
 print("2.Insert at End")
 print("3.Delete at Begining")
 print("4.Delete at End")
 print("5.Display")
 print("6.Node Count")
 print("7.Insert at a Position")
 print("8.Delete at a Position")
 print("9.Search for a Node")
 print("10.Exit")
 choice = int(input("Enter Your Choice:"))
 if choice == 1:
 data = input("Enter a Value:")
 dll.InsertAtBeg(data)
 elif choice == 2:
 data = input("Enter a Value:")
 dll.InsertAtEnd(data)

Department of ME

Data Structures using Python Lab AY-2022-2023

Page 44

 elif choice == 3:
 dll.RemoveNodeAtBeg()
 elif choice == 4:
 dll.RemoveNodeAtEnd()
 elif choice == 5:
 dll.DisplayList()
 elif choice == 6:
 print("Total nodes in the List:",dll.NodeCount())
 elif choice == 7:
 data = input("Enter a Value:")
 nCount=int(dll.NodeCount())
 if nCount==0:
 print("Empty List:")
 else:
 print("Available max position is ",nCount)
 pos = int(input("Enter position of insertion:"))
 dll.InsertAtPos(data, pos)
 elif choice == 8:
 pos = int(input("Enter position for Deletion:"))
 dll.DelAtPos(pos)
 elif choice == 9:
 keyVal = int(input("Enter key for searching:"))
 dll.search(keyVal)
 elif choice == 10:
 exit(0)
 else:

 print("Invalid Choice! Try Again:")

Department of ME

Data Structures using Python Lab AY-2022-2023

Page 45

Department of ME

Data Structures using Python Lab AY-2022-2023

Page 46

12.Write a program to implement Binary Search Tree

 class BSTNode:
 def __init__(self, val=None):
 self.left = None
 self.right = None
 self.val = val

 def insert(self, val):
 if not self.val:
 self.val = val
 return

 if self.val == val:
 return

 if val < self.val:
 if self.left:
 self.left.insert(val)
 return
 self.left = BSTNode(val)
 return

 if self.right:
 self.right.insert(val)
 return
 self.right = BSTNode(val)

 def get_min(self):
 current = self
 while current.left is not None:
 current = current.left
 return current.val

 def get_max(self):
 current = self
 while current.right is not None:
 current = current.right
 return current.val

 def delete(self, val):
 if self == None:
 return self
 if val < self.val:
 if self.left:
 self.left = self.left.delete(val)
 return self
 if val > self.val:
 if self.right:

Department of ME

Data Structures using Python Lab AY-2022-2023

Page 47

 self.right = self.right.delete(val)
 return self
 if self.right == None:
 return self.left
 if self.left == None:
 return self.right
 min_larger_node = self.right
 while min_larger_node.left:
 min_larger_node = min_larger_node.left
 self.val = min_larger_node.val
 self.right = self.right.delete(min_larger_node.val)
 return self

 def exists(self, val):
 if val == self.val:
 return True

 if val < self.val:
 if self.left == None:
 return False
 return self.left.exists(val)

 if self.right == None:
 return False
 return self.right.exists(val)

 def preorder(self, vals):
 if self.val is not None:
 vals.append(self.val)
 if self.left is not None:
 self.left.preorder(vals)
 if self.right is not None:
 self.right.preorder(vals)
 return vals

 def inorder(self, vals):
 if self.left is not None:
 self.left.inorder(vals)
 if self.val is not None:
 vals.append(self.val)
 if self.right is not None:
 self.right.inorder(vals)
 return vals

 def postorder(self, vals):
 if self.left is not None:
 self.left.postorder(vals)
 if self.right is not None:
 self.right.postorder(vals)

Department of ME

Data Structures using Python Lab AY-2022-2023

Page 48

 if self.val is not None:
 vals.append(self.val)
 return vals

 nums = [12, 6, 18, 19, 21, 11, 3, 5, 4, 24, 17]
 bst = BSTNode()
 for num in nums:
 bst.insert(num)
 print("preorder:")
 print(bst.preorder([]))
 print("#")

 print("postorder:")
 print(bst.postorder([]))
 print("#")

 print("inorder:")
 print(bst.inorder([]))
 print("#")

 nums = [2, 6, 20]
 print("deleting " + str(nums))
 for num in nums:
 bst.delete(num)
 print("#")

 print("4 exists:")
 print(bst.exists(4))
 print("2 exists:")
 print(bst.exists(2))
 print("12 exists:")
 print(bst.exists(12))
 print("18 exists:")
 print(bst.exists(18))

Department of ME

